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Abstract. In this paper, an “objective” conception of contexts based loosely upon situation theory
is developed and formalized. Unlike “subjective” conceptions, which take contexts to be something
like sets of beliefs, contexts on the objective conception are taken to be complex, structured pieces
of the world that (in general) contain individuals, other contexts, and propositions about them. An
extended first-order language for this account is developed. The language contains complex terms for
propositions, and the standard predicate ‘ist’ that expresses the relation that holds between a context
and a proposition just in case the latter is true in the former. The logic for the objective conception
features a “global” classical predicate calculus, a “local” logic for reasoning within contexts, and
axioms for propositions. The specter of paradox is banished from the logic by allowing ‘ist’ to be
nonbivalent in problematic cases: it is not in general the case, for any contextc and propositionp,
that eitherist(c,p)or ist(c,¬p). An important representational capability of the logic is illustrated by
proving an appropriately modified version of an illustrative theorem from McCarthy’s classic Blocks
World example.
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1. The Objective Conception of Context

Since McCarthy (1987) first emphasized its importance for AI, there has been a
rapidly growing body of research in the AI community concerning the notion of
context.1 A review of the literature reveals a wide variety of conceptions of context.
However, despite this variety, it seems possible to divide these conceptions into two
broad categories:subjectiveandobjective. On the subjective conception, contexts
are something like logical theories, i.e., sets of propositions. For a given proposition
to be true in a context on this conception, then, is for it simply to be entailed by it.
Thus, that mass is a constant quantity is entailed by, and hence true in, the context
of Newtonian mechanics, but false in that of relativistic mechanics. The reason this
conception is labeled “subjective” is that its proponents typically tend to think of a
context as something like a set of beliefs inside the heads of one or more rational
agents. Thus, McCarthy and Buvač note that the context of a conversation consists
in the “common assumptions of the participants” (p. 15). Similarly, Giunchiglia
(1993) writes that “a context...is inside the reasoning individual” (p. 47). It is “a
theory of the world which encodes an individual’s subjective perspective about it”
(ibid.).

As on the logical conception, contexts on the objective conception are “first-
class citizens.” That is, they are fully-fledged objects that we can refer to and
quantify over as adroitly as we do chairs, planets, chromosomes, and numbers.
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However, in contrast to the subjective conception, on the objective conception,
contexts areoutsidethe skull of any reasoning individual. Perhaps the most ro-
bust example of this conception is found in situation theory (Barwise and Perry
(1986), Devlin (1991)), a powerful, and relatively recent theory of information and
information flow (Barwise and Seligman (1997)). On this theory, a situation is
a complex but (typically) limited, spatially and temporally extended piece of the
real world in which objects – agents, in particular – have properties and stand in
relations to other objects. Situations, in this sense, capture one important intuitive
conception of context, viz., context as thesetting in which things like a baseball
game, the fabrication of a mechanical part, or a conversation occur. In this sense
then, a context provides agents with a shared environment that enables them to
make sense of one another’s behavior. Notably, the participants in a conversation
interpret one another’s utterances by connecting them with objects and information
available in their shared context. Thus, on the objective conception, the truth of a
propositionp in a contextc, ist(c,p), is not alogical relation betweenp and other
propositions, but a relation ofcorrespondencebetween that proposition and the
world: it is a matter of whether the relevant portion of the world – the contextc in
question –is as the propositionsays.

Not surprisingly, the subjective and objective conceptions lead to rather differ-
ent logics of context. Insofar as contexts are thought of as sets of beliefs, it is natural
to develop a logic that reflects the way in which a limited but (ideally) rational
agent in a given context – i.e., a rational agent with a given set of beliefs – reasons
in that context. Notable features of such a logic might include the possibility of
inconsistent contexts (to allow for the possibility of justified but inconsistent beliefs
in “lottery paradox” types of cases) and a nonmonotonic inferential apparatus of
some sort. Perhaps the most dramatic difference between the two, however, con-
cerns the overall perspective of the logic. In the influential logic of McCarthy and
Buvǎc (1998), which is strongly subjective in its orientation, it is assumed that
every assertion is implicitly contextual; every assertion is embedded in an “outer”
context. Thus, for these authors, the basic formulas of the logic are of the form
‘c′:ψ ’ where this includes the notable special case:

c′ : ist(c,p)(1)

indicating “that the propositionp is true in the contextc, itself asserted in an
outer contextc′” (ibid. p. 14). Thought of as sets of beliefs, the outer context
framing every assertion reflects two things: first, the situated character of any
reasoning agent and, second, the essential capacity of a truly intelligent agent
to “transcend” its current context and adopt the broader perspective of an outer
context. That context, of course, will be embedded in a new outer context, and
so could also be transcended by the agent, as could the new context, and so on.
(Context transcendence will be discussed in Section 2.4 below.)

In contrast to the subjective approach, which thinks of assertions in the logic as
something like beliefs in the head of a situated agent (or perhaps implications of
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those beliefs), on the objective conception developed here, assertions in the logic
are notthemselvessituated, non-contextual; there is no outer context. However,
except for identities, the only noncontextual assertions one is capable of making
are assertions about situations and the propositions true in them. More formally, the
only atomic formulas in the language are identities and those of the form ‘ist(c,p)’;
one cannot, for example, make noncontextual assertions of ordinary atomic propo-
sitions such as that Clinton is president; such propositions can only be asserted to
be true in a given context, i.e., the expressions denoting such propositions can only
occur in the second argument of the ‘ist’ predicate. (The language will be defined
rigorously in Section 2.2 below.)

The formal difference here is subtle but important. As on the subjective con-
ception, ordinary atomic propositions can only be asserted to be true relative to a
context. But unlike the subjective conception, assertions about contexts themselves
can be made “absolutely”, outside of any context (though they can also be asserted
relative to contexts as well). The intuition here is that, on the objective conception,
what is true or false in a context is determined by the external world, independent of
any agent’s beliefs (unless, of course, that information involves such beliefs). Such
information is not itself context dependent, and hence the notion of an implicit
outer context for every assertion is not appropriate in a logic for the objective
conception. At the same time, on this situation theoretically inspired approach, it
should be stressed that information about contexts is not, as we might put it,univer-
salacross contexts. That is, while the information one context carries about another
will always be veridical (which is natural on the objective conception where con-
texts are pieces of the external world), due to the partiality of situations, not all
information about a given context is carried by every other context. More formally,
while ist(c,p) does follow fromist(c′, ist(c,p)) on the objective conception, the
converse does not hold; fromist(c,p) it does not follow thatist(c′, ist(c,p)), for
anyc′.

Now, a logic based on an “absolute” perspective is perhaps of questionable rel-
evance for the classical AI program of building intelligent machines, i.e., at least,
machines that can act flexibly and appropriately in changing environments. For
this goal, the purpose of a logic is to serve as the basis of a mechanism that, when
implemented, enables a machine to reason correctly upon its beliefs and then, on
the basis of that reasoning, to choose appropriate actions. The logic is thus itself
in the “head” of such a situated agent, and is applied to the agent’s salient beliefs,
i.e., to its current context in the subjective sense.

However, this is not the vision that motivates a logic based upon the objective
conception. Rather, its motivation comes out of the area of knowledge represen-
tation (KR), and most specifically the relatively recent branch known asformal
ontology(see, e.g., Guarino (1995), Guarino (1998), Menzel (1997)). An ontology
is a formal representation (typically a set of axioms in a logical language) of the
objects and concepts that constitute some (abstract or concrete) real world domain.
The purpose of an ontology is to clarify the logic of the domain, to make explicit
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and clear the relevant concepts one finds there, and thereby to fix the meaning of
the vocabulary that is used to describe the domain.

The original motivation for formal ontologies was to fix the meanings of, and
logical connections between, the terms in large knowledge bases sufficiently to en-
able them to be reliably shared and reused across different KR frameworks (Neches
et al. (1991), Gruber (1995)), for example, LOOM (MacGregor (1991)) and CLAS-
SIC (Borgida et al. (1989)). For the most part, such knowledge bases originally
arose out of large academic Al projects. However, it has become increasingly ap-
parent in recent years that the methods of formal ontology have enormous potential
for the area ofenterprise modeling(cf., e.g., Petrie (1993), Fox and Grüninger
(1994)). An enterprise model is a representation of some aspect of a large system,
formulated in the language of some enterprise modeling method such as the IDEF
methods (Menzel and Mayer (1998)). Enterprise models come in a fairly wide vari-
ety of types, corresponding roughly to different types of information: the relatively
static information associated with given database schema, the dynamic information
of a given manufacturing process, etc.

Models are used for virtually every aspect of enterprise engineering, from the
planning and development of the enterprise itself to the definition and maintenance
of its processes. It is, therefore, crucial that these models can be shared and reused.
However, just as there are many different KR languages in AI, there many different
enterprise modeling languages as well. Thus, the same kinds of problems arise for
the sharing and reuse of enterprise models as arise for the sharing and reuse of AI
knowledge bases. So whatever promise the methods of formal ontology hold for
the latter should carry over to the former as well. Notably, the modeling languages
themselves need clearly defined logical foundations.

A logic of contexts seems particularly well-suited as the logical foundation for
enterprise modeling. Because virtually any enterprise is a complex network of con-
nected situations, enterprise models themselves are highly contextual: a database
schema typically structures information about one element of a larger enterprise’s
activities, e.g., vendor and pricing information for raw materials; a process model
typically captures one specific enterprise process, e.g., a specific shop floor manu-
facturing process. A logic of contexts will provide the right sort of framework for
keeping the information of many different enterprise models properly contextual-
ized, but in a manner that also allows integration and sharing of that information
across different models.

Now, finally, the reason why a logic based upon the objective conception is more
appropriate than one based upon the subjective conception is that the information
enterprise models typically carry does not usually reflect the perspective of a situ-
ated agent. Rather, such information is typically thought of as absolute, a (perhaps
temporally extended) snapshot of an enterprise context taken from a “God’s eye”
point of view. A business systems analyst, for example, strives simply to model
how some aspect of a given business works. She is, ideally, a perfect observer,
objectively recording data about that aspect of the system in order to generate
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models that she can subject to analysis. In this “perfect observer” mode, she does
not include herself as a part of the modeled system; her standpoint is objective and
external to the system and its processes. Again, an industrial engineer developing
a manufacturing process plan models the way the intended process is supposed to
occur. As its creator, the designer is himself outside of the process being designed,
not (typically) in it. As with the systems analyst, his standpoint is objective and
external.

In both cases, what is modeled is simply the information carried in each con-
text and the manner in which that information flows between contexts, objectively
construed. With its overtly external standpoint and its basis in a modern theory of
information, the objective conception of context thus seems to be the right founda-
tion for these modeling activities. (See Menzel et al. (1993) for some initial steps
in this direction.)

2. A Language for the Objective Conception

It will be useful at this point to begin formalizing a logic for the objective concep-
tion of context. We begin by defining an appropriate language. We will then use the
language as a basis for more detailed exposition of the objective conception. That
will in turn set the stage for the presentation of the logic.

2.1. REIFIED PROPOSITIONS AND THE REPRESENTATION OF THEtrue-in
RELATION

The fundamental intuitive idea behind any theory of context is that of a proposi-
tion being true in a context. The most straightforward accounting of this intuition
is that there is a relationtrue-in that propositions bear to contexts. This in turn
presupposes that propositions, no less than contexts and ordinary individuals, are
first-class citizens: propositions are genuine items in the inventory of the world, and
hence can be referred to and quantified over like any other objects. (Propositions so
considered are also known as “reified” propositions.) This, however, leaves it open
whether we are to use a first-order language or a higher-order language for this
purpose. Both options are possible, and both have their advantages and liabilities.
However, to deal with some of the semantic subtleties of thetrue-in relation the
account here will draw upon techniques that have been developed for first-order
languages (see Section 3.4.1), and so we will remain first-order.

To begin with, then, our language for contexts will contain a 2-place predi-
cate ‘ist’ indicating thetrue-in relation, and the usual quantificational apparatus of
first order logic. Intuitively, quantifiers will range over a single domain containing
three kinds of individual objects (our first-class citizens): contexts, propositions,
and ordinary objects (concrete and abstract) like people and numbers. We will not
introduce any special predicates or sorted variables for any of our three kinds of
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individuals (though, importantly, it will be possible to define a formula that is true
of all and only contexts).

Individual constants will suffice for denoting ordinary objects and contexts, but
propositions in general come in a wide variety of logical forms corresponding
roughly to the syntactic forms of the sentences in a first-order language. Hence,
if we want to capture the richness of these logical forms, we will need something
more complex than mere individual constants for denoting propositions. For this
reason, some researchers – Buvač, Buvǎc, and Mason (1995), for instance – simply
use first-order sentences to indicate propositions. On this approach, “is true in” is
represented not with a predicate but with a modal operator ‘ist’ such that, for any
termτ and formulaϕ, ¬ist(τ, ϕ) is a formula as well.

As illustrated in, e.g., McCarthy and Buvač (1998), this approach is adequate
for many purposes. Note, however, that, becauseϕ in dist(τ, ϕ)e is not a term, this
approach does not treat propositions as first-class citizens. Now,a priori, that may
in fact turn out to be fine; while we might think of propositions realistically as first-
class citizens in the informal situation theoretic picture that motivates our account,
it could turn out that we needn’t explicitly introduce them into the semantics of the
formal theory at all; the definition of the truth of a formula in a context might be
all we need.

However, this does not appear to be so. In recent years especially, a wide variety
of intuitive, linguistic, and philosophical phenomena have been identified that are,
arguably, best explained (or, perhaps,onlyexplained) by explicitly introducing rei-
fied propositions (Bealer and Mönnich (1989), Zalta (1988)). Best known among
these, perhaps, are the logical and semantic phenomena surrounding singular ref-
erence and the associated puzzles ofde rebelief (Salmon (1986)). Additionally, a
number of linguists have argued that propositions (as well as properties) provide
the only satisfactory account of the pervasive phenomenon of nominalization in
natural language (see, e.g., Chierchia and Turner (1988), Chierchia, Partee, and
Turner (1989)). Furthermore, certain intuitive logical inferences seem to involve
reference to, and quantification over, propositions. For example, if Pete and Joyce
both believe that the Mariners will win the American League pennant, then there
is something that they both believe, viz.,that the Mariners will win the pennant.
Closer to our immediate topic, quantification over propositions also seems to be
required if we are to be able say certain things that we might naturally want to
say about contexts. For instance, for those of a more philosophical bent wishing
to comply with the Quinean dictum “No entity without identity” (Quine (1981),
p. 102), a plausible criterion of identity for contexts can be drawn from situation
theory: contexts are identical iff the same information holds in both of them, i.e., in
the current reconstruction, iff the same propositions are true in them (cf. Barwise
(1989), p. 264):

c = c′ ↔ (∀p)(ist(c,p)↔ ist(c′, p)).(2)
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Clearly, however, this criterion quantifies over propositions. Therefore, there ap-
pear to be good grounds for investigating an alternative to the operator approach
that represents “is true in” as a genuine predicate and, consequently, explicitly
represents propositions as first-class citizens.

2.2. THE LANGUAGE

Our languageL for a formal logic of contexts, then, will need at least our 2-place
predicate ‘ist’ and a special class of terms that can be used for referring explicitly
to particular propositions likeThe Mariners will win the pennant. As noted above,
however, on the objective conception, the only noncontextual propositions we want
to be able to express are identities and propositions about contexts. We will do
this by restricting the occurrence of predicates expressing ordinary properties and
relations so that they only can occur in terms denoting propositions; it will not be
possible to use them to construct ordinary atomic formulas.

So, more formally, consider a lexicon consisting of a denumerable set of con-
stants, a denumerable set of variables, countably manyn-place predicates, for alln,
0 <n < ω, logical operators,¬,→,=,∀, and parentheses ( and ). We stipulate that
the lexicon must include at least the distinguished 2-place predicate ‘ist’. The well-
formed expressions of the languageL are given by the following simultaneous
recursive definition.
1. Every constant or variable is asimple term. Every simple term or propositional

term is aterm.
2. If π is ann-place predicate andτ, τ ′, τ1..., τn are terms, thenπ(τ1, . . . , τn)

andτ = τ ′ are (atomic) propositional terms.
3. If τ andτ ′ are propositional terms andx any variable, then¬τ , τ → τ ′, and

(∀x)τ are propositional terms.
4. If τ and τ ′ are terms andx any variable, then¬τ, τ → τ ′ and (∀x)τ are

propositional terms.
5. If τ andτ ′ are terms, thenist(τ, τ ′) andτ = τ ′ are (atomic) formulas.
6. If ϕ andψ are formulas andx any variable, then¬ϕ, ϕ → ψ and(∀x)ϕ are

formulas.
7. Nothing else is a term or formula ofL.

Other standard logical operators besides∀ and→ are defined as usual. Notions of
free and bound variables, closure, and of a term being free (or substitutable) for
a variable are as usual for formulas and are directly analogous for terms. Square
brackets will occasionally be used around propositional terms to aid readability.
(∀x1 . . . xn) will abbreviate(∀x1) . . . (∀xn).

L is an instance of a broad class of extended first-order intensional languages
that take propositions (and, more generally, properties and relations as well) to
be first-order objects (see esp. Bealer (1982) and Turner (1987)).2 But because
these languages are not widely used in AI, it is worth commenting on a few of
L’s features. First, assumingL is endowed with a rich stock of constants and
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predicates beyond ‘ist’, the language will contain a correspondingly rich variety of
propositional terms. For example, suppose we let ‘m’ stand for the Seattle Mariners
and ‘W ’ for the property of winning the American League pennant. Then there
is the propositional term ‘W(m)’ denoting (intuitively) the proposition that the
Mariners win the pennant. Notice, however, that this expression isnota formula of
L: since the proposition it expresses is essentially contextual, the term cannot be
asserted by itself, outside of any context. Rather, it can only be asserted as part of an
atomic formula of the form ‘ist(c,W(m))’ to the effect that it is true in some contextc
(or in identities like ‘p=W(m)’). This, of course, reflects the objective conception,
which adopts a standpoint outside of all contexts. Hence, being a “God’s eye” view
of the space of contexts and not itself another context, the only information that
is available from that standpoint – the only noncontextual information that can be
asserted – consists of identities and statements to the effect that a given proposition
is true in a given context (and boolean and quantified elaborations thereof).3

In contrast to expressions like ‘W(m)’, ‘ ist(c,W(m))’ is both a termand a
formula. As such, in addition to being assertible as is (qua formula), it can also
be asserted (qua term) as an argument to a predicate, the ‘ist ’ predicate in par-
ticular. This permits us to express the nesting of contextual information that is so
essential to any theory of contexts (see especially Section 2.4 below). Note that
this is completely kosher. All that is required of terms in a language is that they
can be assigned a unique denotation. All that is required of formulas is that they
can be assigned a unique truth value. That some expressions are assigned both a
denotation (qua term) and a truth value (qua formula) is perfectly consistent with
these requirements.4

Second, although propositions are often called “higher-order” objects, the fact
that there are terms denoting propositions does not of itself makeL a higher-
order language. Being higher-order is asemantic, or model theoretic, property of
a language; as Shapiro (1991) notes in his excellent study (p. 13), “languages ...,
by themselves, are neither first- nor higher-order.” (See also Enderton (1972), ch.
4). A language + model theory is truly higher-order, roughly, if and only if there
are quantifiable variables in the language that range over the elements of some sort
of power-set construction over the domain of individuals (or some other primitive
semantic domain such as worlds or times). An object in the model theory is said
to be higher-order if it is an element of such a construction. Properties and propo-
sitions in standard possible world semantics, for example, are higher-order in this
sense: the class of propositions is defined to be the set of all functions from possible
worlds to truth values (or, equivalently, the power set of the set of possible worlds),
and properties the set of all functions from possible worlds into the the power set of
the set of all possible individuals (see e.g., Dowty, Wall, and Peters (1981)). In the
model theory forL, however (which is only presented informally here), there is just
a single sort of variable ranging over a single domain. The propositions constitute
a subset of that domain. There are no higher-order objects in the technical sense of
“higher-order”. In particular, although the class of propositions is stipulated to be
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closed under certain logical operations (see Section 3.3 below), it is not a power set
construction of any sort. Semantically, propositions are just first-order individuals,
andL, with its model theory, is a first-order language in the truest sense.

2.3. LOCALISM AND THE EVALUATIVE STANDPOINT

On the objective conception, a context provides a sort of “model” that determines
the truth values of propositions. However, because of the limited nature of con-
texts, propositions that are true in one context may fail to be true in another. Call
this phenomenonlocalism. The ground of localism is the simple fact that which
propositions hold in a context is a function of how things stand with regard to the
objects that are present in the context. Since contexts can differ both with regard
to the objects present in them and with regard to how things stand with those
objects, localism follows immediately. There are two notable manifestations of
localism that we will want to capture in our logic. First, basic atomic propositions
concerning the properties of, and relations among, objects that are not present in a
context are simply not true there, regardless of whether or not they are true in the
contexts in which theyare present. The tallest building in Melbourne, Australia,
for example, is not present in the context of a city league softball game in College
Station, Texas; hence, the proposition that it is, say, over 300 meters high does not
hold in that context; for nothing in the context makes it true. Thus, a context carries
“positive” information (i.e., information in the form of an atomic proposition) only
about those objects that it “knows about,” i.e., which are present in it; there is
just no positive information available within a context regarding things outside the
context, i.e., no information about what properties they have or what relations they
bear to other things. Call thisatomic localism.5

Second, quantified propositions (see Section 3.3) are evaluated in a context
relative to the set of objects present in the context. Thus, an existentially quantified
proposition that holds in one context might well fail in a broader context. Call this
quantificational localism. Lewis (1986) illustrates quantificational localism with
the propositionthere is no beer, which turns out – to the horror of the neighborhood
frat house – to be true in the context determined by a salient refrigerator. However,
relative to the broader context of the neighborhood in which the refrigerator is situ-
ated, and in particular relative to the context circumscribed by the corner mini-mart,
the proposition is – to the frat brothers’ great relief – false.

2.3.1. Localism and Partiality

Let b be the tallest building in Melbourne, 300m the property of being 300 meters
tall, andc∗ the context of a city league softball game in College Station. By atomic
localism, the proposition 300m(b) is not true in the contextc∗, that is¬ist(c∗,
300m(b)). However, atomic localism does not determine whether or not we should
count thenegatedatomic proposition¬300m(b) that it is not the case that the tallest
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building b in Melbourne is over 300 meters high as true inc∗. The option we will
adopt represents a fairly strong departure from standard situation theory.

Say that a contextc is weakly partialwith regard to information if, for some
objecte, there is no positive information aboute in c.6 By atomic localism, then
(assuming that every individual has some property or stands in some relation to
other individuals), every context in which fewer than all individuals are present is
weakly partial. Say thatc is strongly partial with regard to information if there
is some atomic propositionp such that neitherp nor its complement¬p is true
in c. Strong partiality, then, is essentially the failure of bivalence in general with
regard to thetrue-in relation. In standard standard situation theory, every situation
in which fewer than all individuals are present (i.e., every, or nearly every, situation)
is strongly partial with regard to information. A situation can carry no negative
information – indeed, no information at all about objects that are not present in
it; the situation is simply silent with regard to such information. In particular, in
situation theory, neither 300m(b) nor¬300m(b) is true inc∗.

As we will see in Section 3.4.1, it will be possible in the logic here for a context
to be strongly partial with regard to information, but only under rare conditions in
which logical paradox threatens. Such pathological cases aside, on the conception
developed here, a contextdoescarry negative information about objects that are
not present in it. In particular, but for the problematic cases just noted, a negated
atomic proposition¬p is deemed true in a context just in casep simply is not true
there. Thus, the proposition¬300m(b) will be taken to be true in the context of
a softball game in College Station, despite the distinct absence of the building in
question.

It seems to me that both options regarding the evaluation of negated proposi-
tions are compatible with the objective conception. The difference reflects a choice
regarding what we might call theevaluative standpoint. Say that a piece of in-
formation – a proposition –p is generatedin a contextc just in case all of the
objects thatp is about are present inc. In standard situation theory, the evaluative
standpoint isinternal – one, in a sense, puts oneself “inside” the situation and
evaluates the propositions that are generated there, as those are the only ones that
one can “see” from within the context. Those propositions that are not generated
in the context, from the internal standpoint, are simply not available for evaluation.
In contrast to standard situation theory – and perhaps somewhat more in the spirit
of the objective conception – the evaluative standpoint adopted here isexternal,
outside all particular contexts. From this perspective, any proposition generated in
any context can be evaluated with respect to any other context, even contexts in
which the proposition is not generated. In particular, from this standpoint, a typical
negated atomic proposition¬P(a1, . . . , an) will be evaluated as true in a context
c just in caseP(a1, . . . , an) is not true inc, i.e., just in case the objectsa1, . . . , an
fail to stand in the relationP in c, regardless of whether or not they are present in
c. Most contexts, that is to say, while weakly partial with respect to information,
are not strongly partial.
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It is worth emphasizing that, from the external evaluative standpoint adopted
here, there are two ways in which a negated atomic proposition¬Foo(a) can be
true in a context. It can be true becausea is present inc and fails toFoo there, or it
can be true becausea – which may well beFoo in other contexts is simply absent
from c; there is just no (positive) information abouta and its properties available
in the context to validate the propositionFoo(a). We must therefore distinguish
between having the propertynon-Foo in a context – which, by localism, entails
presence inc – from not beingFoo atc. Properly defined (in light of localism), the
property of beingnon-Fooin a context entails presence in the context:

ist(c,non-Foo(x)) ≡df ist(c, [(∃y)y = x ∧ ¬Foo(x)]).(3)

It then follows that, while, beingnon-Fooat c — ist(c,non-Foo(x)) – entails not
beingFoo there –ist(c,¬Foo(x)) – the converse is not true.7

2.4. SUBSUMPTION AND CONTEXT TRANSCENDENCE

As McCarthy has repeatedly emphasized in his work on context, a significant
capacity underlying intelligent problem solving is the ability totranscendone’s
current context and reason about broader contexts in which the original context is
embedded. Indeed, to represent this phenomenon robustly might be thought of as a
strong condition of adequacy on any logic of context. However, subjective and ob-
jective conceptions differ in regard towhatis being represented. An adequate logic
for the subjective conception will represent context transcendence from within the
head of an intelligent agent. An adequate logic for the objective conception, by
contrast, will represent the logical properties of contexts that make transcendence
possible. Notably, it will be capable of representing thesubsumptionof one context
by another in which information about what holds in one contextc′, ist(c′,p), is
itself information that holds in a broader contextc, ist(c, ist(c′,p)). (Subsumption
is defined and axiomatized in Section 3.4.) An agent inc′ that apprehends this
relation can transcend that context and situate itself in the broader contextc, from
which it can formulate strategies for action and problem solving that were not
possible relative to the original contextc′. So, for instance, by transcending the
context of the house refrigerator to the broader neighborhood context, the frat
brother in charge of refreshments is able to form a feasible plan for solving the
pressing problem of beer depletion.

It is instructive to see how the languageL represents the facts about subsump-
tion on the basis of which such an agent might transcend from one context into
another. Roughly speaking, one transcends a contextc when, after reasoning from
within c, one begins to reason from within a broader contextc′, a context within
which, in particular, one can reason about the original contextc. Thus, to return to
the example above, upon discovering the fraternity’s current plight, the brother in
charge of refreshments hastens to the local mini-mart, purchases an ample supply
of Sam Adams, and returns triumphantly home. The reasoning underlying his ac-
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tions can be explicated (in part, at least) in terms of his transcending the context of
his immediate beerless environment,

ist(f,¬(∃x)Beer(x)),(4)

or, using the often more perspicuous notation of McCarthy (1993) noted above,8

f : ¬(∃x)Beer(x)(5)

to the broader context of his local neighborhood, which both subsumes the original
beerless context and contains the source of a remedy,

ist(n, ist(f,¬(∃x)Beer(x)) ∧ ist(m, (∃x)Beer(x))),(6)

i.e.,

n : ist(f,¬(∃x)Beer(x)) ∧ ist(m, ((∃x)Beer(x))).(7)

That is, in the context of the broader neighborhoodn in which our hero is situated,
while there is no beer in the fridge, there is at the local mini-mart. Thus, by tran-
scending the context of his refrigerator to the broader neighborhood context he is
able to form a feasible plan for replenishing the frat house’s depleted supply.

The key here, again, is the ability to express information of the formist(c,
ist(c′,p)) to the effect that information about what holds in one context –ist(c′, p)
– can itself be information that holds in a broader context. This is possible inL by
virtue of the fact that every formulaϕ of L is also a term (though not vice versa),
and hence capable of appearing in the second argument place of ‘ist’.

3. A Logic for the Objective Conception

With the language defined and some intuitive underpinnings laid, we can now begin
constructing the logic – CL – for the objective conception of context. Letϕ,ψ , and
θ be any formulas,τ , τ ′, andτ ′′ any propositional terms,x, y, k, k′, andp any
distinct variables, and letεxτ be the result of replacing every free occurrence of a
variablex in the expressionε with τ . (Any of these may occur with subscripts.)
Then the universal closures of any instance of the following schemas L1 – L29 is
an axiom.9



41

3.1. “GLOBAL” PREDICATE LOGIC

L1 ϕ→ (ψ → ϕ)

L2 (ϕ→ (ψ → θ))→ ((ϕ→ ψ)→ (ϕ→ θ)).

L3 (¬ϕ→ ψ)→ ((¬ϕ→ ¬ψ)→ ϕ).

L4 (∀x)ϕ → ϕxσ for any termσ free forx in ϕ.

L5 (∀x)(ϕ→ ψ)→ (ϕ→ (∀x)ψ), wherex does not occur free inϕ.

L6 x = x.

L7
x = y → (ϕ → ϕ′), wherey is substitutable for
x in ϕ, andϕ′ is the result of replacing one or more
occurrences ofx in ϕ with y.

Rule of Inference

MP ψ follows fromϕ andϕ→ ψ .
As usual, aderivation in CL is a sequenceS = 〈ϕ, . . . , ϕn〉 such that eachϕi is
either an axiom of CL or follows from earlier elements of the sequence byMP. S
is a derivation ofϕ in CL if ϕ = ϕn. We write` ϕ if there is a derivation ofϕ
in CL. ϕ is derivable from0 in CL – 0 ` ϕ – if, for some finite subset0′ of 0,∧
0′ → ϕ, where

∧
0′ is any conjunction of the members of0′.

A useful derived rule of inference that will be used below is Generalization on
Constants:10

GC (∀x)ϕ follows fromϕxa , for any constanta.

3.2 “LOCAL” PREDICATE LOGIC

Now we need to identify the logical principles that govern matters within contexts.
Note first it is possible to define the notion of context in terms of thetrue-in re-
lation: an entity is a context just in case something is true in it:Context(x) ≡df
(∃y)ist(x, y). This is important, because most of the remaining axioms concern
contexts, not all things generally, and hence are typically of the formdContext(x)→
ϕe. To facilitate readability, however, we will assume the existence of a distin-
guished set of sorted variables that range over contexts, and we letc and c′ be
any two such variables.11 To begin, then, we note that classical propositional logic
carries over into contexts directly:

L8 ist(c, [τ → (τ ′ → τ)]).
L9 ist(c, [(τ → (τ ′ → τ ′′))→ ((τ → τ ′)→ (τ → τ ′′)]).
L10 ist(c, [(¬τ → τ ′)→ ((¬τ → ¬τ ′)→ τ)]).
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Although the propositional logic of contexts is classical, the logic of quantifi-
cation within contexts is basically a free logic. The reason for this, of course, is
quantificational localism: the things present in a typical context constitute only a
proper subset of all the things there are. Thus, what may be true of everything in
the context, may not be true of everything in general. Hence, since we want to in-
terpret quantifiers locally, we cannot preserve truth by allowing arbitrary universal
instantiations. More explicitly, suppose everything in contextc has propertyFoo,
that is, interpreting quantifiers locally,

ist(c, (∀x)Foo(x)),(8)

and suppose thatb is an object that is not inc, and which is also notFoo in any
context. Then, in particular, it is not the case thatb is Foo at c, i.e.,

¬ist(c, Foo(b)).(9)

Hence, on pain of contradiction, we do not want to be able to infer

ist(c, Foo(b))(10)

from (8), and so we do not want local universal instantiation, viz.,

ist(c, (∀x)τ → τ xσ ), σ free forx,(11)

as a general logical principle. Rather, we want to restrict the terms we can instan-
tiate for the bound variable to those denoting objects present in the contextc. We
can accomplish this by introducing a notational definition:
DEFINITION 1.E!(x) ≡df (∃y)y = x.
Note that sinced(∃y)y = xe is also a term, it (hence its abbreviationdE!(x)e) can
appear as an argument to ‘ist ’. For readability, we definedE!(τ1, . . . , τn)e to be
the conjunctiondE!(τ1) ∧ . . . ∧ E!(τn)e. Given this, we introduce the axioms for
local quantification:

L11 ist(c, (∀x)τ → (E!(σ )→ τxσ )), for any termσ that is free forx in τ .

L12 ist(c, (∀x)(τ → τ ′)→ (τ → (∀xτ ′))), wherex does not occur free inτ .

Local identity axioms, as well as local versions of all the axioms below, follow
from a “reflection” principle to the effect that propositions provable in the global
logic are true in every context:

L13 If ` ϕ, then` ist(c, ϕ).

Complementing the local schemas above we have schemas that, in essence, give
us MP and Generalization for local inferences:

L14 ist(c, (τ → τ ′))→ (ist(c, τ )→ ist(c, τ ′)).
L15 (∀x)ist(c, τ )→ ist(c, (∀x)τ).
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That is, if τ is true inc for everything whatever, then(∀x)τ is true inc as well.
Making matters more explicit, L14 and LiS yield the following metatheorems:

M1 If ` ist(c, σ ), and0 ` ist(c, σ → τ), then0 ` ist(c, τ ).

M2 If 0 ` ist(c, τ xk ), andk does not occur in any member of0,

then0 ` ist(c, (∀x)τ).
For reasons having to do with negation and the truth-at relation discussed below,

we cannot prove what isalmostthe contrapositive of L15, and hence we assume it
as a further principle:

L16 ist(c, (∃x)τ)→ (∃x)ist(c, τ ).

Atomic localism – that only atomic propositions about objects present in a con-
text can be true in it – is expressed by the following schema:

L17 ist(c, [π(x1, . . . , xn)→ E!(x1, . . . , xn)]).
Note that, because ‘=’ is categorized as an operator, not a predicate, L17 does not
apply to identities, hence we get no contradiction from the fact thatist(c, b =
b) even if b is not present inc, i.e., even ifist(c,¬E!(b)). The justification for
this is that identities are true objectively, outside of all contexts, as well as across
all contexts, regardless of how things stand among the objects present in those
contexts. We express this noncontextual character of identity propositions in the
following principle:

L18 ist(c, x = y)→ x = y.

That is, any identity that is true in a context is true simpliciter. The converse is a
consequence of L6 and L13.

3.3. AXIOMS FOR PROPOSITIONS

It is widely agreed that the phenomena of intentionality and singular reference
noted above in Section 2 are best explained in terms of propositions that are “fine-
grained” in the sense that their identity conditions are determined by their internal
structure rather than by their extensions, i.e., their mere truth or falsity in and
across contexts (see, e.g., Bealer (1982), Chierchia and Turner (1988), Soames
(1987), Zalta (1988)). The intuitive idea here is that complex propositions are “built
up” from their simpler components by means of a collection of logical functions.
Initially, we assume the existence of all the atomic propositions that can be built
up from a givenn-place relation andn arguments. We then postulate that atomic
propositions are identical if and only if they contain the same relation and that
relation has the same arguments in the propositions. The closest we can get to
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capturing this without quantifying over properties and relations is captured in the
following principle (for brevity, letσ beπ(τ1, . . . , τn), σ

′ beρ(τ ′1 . . . , τ
′
n), σ

∗ be
π(x1 . . . , xn), andσ ′∗ beρ(x1, . . . , xn)):

L19 σ = σ ′ → ((τ1 = τ ′1 ∧ . . . ∧ τn = τ ′n) ∧ (∀cx1 . . . xn)(ist(c, σ ∗)↔
ist(c, σ

′∗))).

It is also assumed that atomic propositions built up from relations of different
arity are distinct:

L20 π(τ1, . . . , τn) 6= ρ(τ ′1, . . . , τ ′m), if n 6= m.

Negated propositions are constructed from given propositions by means of a
logical negation functionneg, conditional propositions by means of a function
cond, and universally quantified propositions by means of logical functionsu-
quant.12 Fine-grainedness is ensured by requiring that the logical functions have
disjoint ranges and are all one-to-one – or at least nearly so;u-quant will be
assumed to be one-to-oneup to similarity, where, roughly,p andq are similar if
their internal structure differs only with regard to the individuals they contain. (The
model theory forL, of course, contains a more precise definition.) The one-to-one-
ness ofnegandcond is captured in schemas L21 and L22, and that ofu-quantby
L23:

L21 ¬τ = ¬τ ′ → τ = τ ′
L22 [τ → τ ′] = [σ → σ ′] → (τ = σ ∧ τ ′ = σ ′).
L23 [(∀x)τ ] = [(∀x)τ ′] → τ = τ ′.

That the ranges of the logical functions are pairwise disjoint is expressed in the
following schema:

L24 τ = τ ′, whereτ andτ ′ are propositional terms
of different syntactic categories.

Finally, note that these requirements on the logical functions ensure that each
proposition has a uniquedecomposition– analogous to the decomposition of a
formula into its subformulas and, ultimately, its primitive terms and predicates
– that reveals how it was built up from simpler entities. Given this, we will as-
sume in addition that every proposition isstructurally well-foundedin the sense
that no proposition can contain itself in its own decomposition. Structural well-
foundedness is captured in the following schema (cf. Bealer (1982), p. 65):

L25 k = τ − k′ = τ ′, whereτ is a propositional term containingk′,
andτ ′ is a propositional term containingk.
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3.4. THE LOGIC OF SUBSUMPTION

As noted, it is an essential feature ofL that it can represent the properties of
contexts that lie at the heart of context transcendence. Most notably, as discussed in
Section 2.4,L is able to represent the subsumption of one context by another. The
final plank in our logic of context concerns the logic of subsumption. Formally, we
define subsumption as follows:

DEFINITION 2. c 4 c ≡df ∀p(ist(c′,p)→ ist(c, ist(c′,p)),

that is, loosely,c subsumesc′ if, wheneverp is true in the contextc′, the contextc
carries the information thatp is true inc′.

Note that, by atomic localism L17, it follows the fact thatc subsumesc′ that the
narrower contextc′ is itself present in the broader contextc, i.e.,

c′ 4 c→ ist(c, E!(c′))(12)

This makes good sense on the objective conception: for, by localism, the informa-
tion that holds in a given context is a function of the objects that are present in
the context. Sinceist(c′,p) is itself information inc, and sincec′ is a fully-fledged
object, it follows thatc′ is present inc as well.

What about the converse of (12)? Though not a theorem of our principles to this
point, it does seem intuitively valid. For supposec′ is present inc, and suppose that
two objectsa andb stand in some relationR in c′ (and hence, by atomic localism,
are present inc′). Intuitively, if contexts on the objective conception are simply
pieces of the real world, it seems that the only way to make sense of the idea of one
contextc′ being present in anotherc is to think ofc′ as asubcontextof thec, i.e.,
as a smaller context embedded in a larger one – as the seventh inning is embedded
in a given baseball game, for example. If so, however, it seems reasonable that
every object present in the subcontextc′ must be present in the larger contextc, the
objectsa andb in particular. Now, sincea, b, andc′ are all present inc, and since
a bearsR to b in c′, intuitively once again, the informationthat a bearsR to b in
c′ is carried byc. More generally, the larger contextc “sees” everything that is true
in the subcontextc′, i.e., the converse of (12) is intuitively valid. We thus add it as
an axiom:

L26 ist(c, E!(c′))→ c′ 4 c,

By the definition of subsumption, ifc subsumesc′, then if p is true in c′, c
carries the information thatp is true inc′. What about the converse of this latter
proposition? That is, ifc carries the information thatp is true in (a subcontext)c′, is
that information veridical? It is an important – and intuitive – part of the objective
conception that it is:

L27 ist(c, ist(c′,p))→ ist(c′,p).
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This is perhaps the point where the objective conception parts ways most dra-
matically from the subjective conception. For if contexts are thought of as consti-
tuted by an agent’s beliefs, then there is noa priori reason to suppose that what is
true in one context according to another – i.e., what one agent believes according
to the beliefs of another agent – is going to be veridical. The objective conception,
however, pretty much demands veridicality: the information a context carries is
determined by how things stand in the context. But what is true in its subcontexts
is part of how things stand in a context. Hence, such information will always be
veridical.13

Similar considerations yield a concomitant principle, viz., that no contradiction
is true in any context, a reasonable principle on the objective conception insofar
as we assume that the world itself (hence any piece thereof) is consistent. This is
expressed in the following axiom:

L28 ¬ist(c, τ ∧ ¬τ).

3.4.1. Self-aware contexts, self-referential propositions, and the specter of
paradox

The converse of L27, of course, is invalid, since not every context carries informa-
tion about what is true in every other context; that is, not every context subsumes
every other context. However, a qualified form of the converse does follow directly
from the definition of subsumption, viz., that ifp is true in a given contextc′, then
the information thatp is true inc′ is carried by every context that subsumesc′:

ist(c′,p)→ (c′ 4 c→ ist(c, ist(c′,p))).(13)

But what about information about whatisn’t true in a given context? For exam-
ple, does it follow from¬ist(c′,p) andc′ 4 c thatist(c′, q), whereq is the negation
of p? In fact, this will follow from (13) if the truth-in relation is bivalent, i.e., if

(∗) ist(c, τ ) ∨ ist(c,¬τ).
Given that both CL’s global and local propositional logics are classical, (∗) is not
an unreasonable assumption. Nevertheless, (∗) is highly problematic. As noted, the
language of CL contains terms for propositions that are first-class citizens capable
of a certain sort of self-reference. Moreover, the language contains a (relativized)
truth predicate. Under such circumstances, the specter of paradox looms large. The
most immediate threat, viz., that of an overtly self-referential liar propositionp =
¬ist(c,p) that says of itself that it is not true in some contextc is averted in virtue
of the structural well-foundedness of propositions. However, this by no means frees
the theory from the threat of paradox. Rather, given (∗) and a couple of the intuitive
properties of contexts and propositions made explicit in the above principles, it is
possible to construct “empirical” paradoxes of the sort brought to prominence in
Kripke (1975) that do not involve overtly self-referential propositions.



47

Consider, in particular, the proposition[(∀x)(Rx → ¬ist(c, x))], i.e., the propo-
sition that everything that isR is false atc. (Let ‘λ’ serve as an abbreviation for
this proposition.) Suppose thatλ itself is the only thing present inc that isR,
i.e., thatist(c, (∀x)(R(x) ↔ x = λ)), and also thatc subsumes itself,c 4 c.14

Now, by our global propositional logic, eitherist(c, λ) or ¬ist(c, λ). So suppose
ist(c, λ). Then ist(c, R(λ) → ¬ist(c, λ)) and, hence, sinceist(c, R(λ)) (which
follows from ist(c, (∀x)(R(x) ↔ x = λ))), we haveist(c,¬ist(c, λ)). However,
sincec 4 c, then by our assumption thatist(c, λ) and (13) we haveist(c, ist(c, λ)).
It follows from our local propositional logic thatist(c, [ist(c, λ) ∧ ¬ist(c, λ)]),
contradicting L28. Hence,¬ist(c, λ). So suppose instead that¬ist(c, λ). By (∗) it
follows thatist(c,¬λ), i.e.,ist(c, [¬(∀x)(Rx → ist(c, x))]). By definition of∃ and
∧ we haveist(c, [∃x(R(x) ∧ ist(c, x))]). But sinceist(c, (∀x)(R(x)↔ x = λ)), it
follows thatist(c, [R(λ)∧ist(c, λ)]) and henceist(c, ist(c, λ)). So by L27,ist(c, λ).
Contradiction!

(∗), then, is unsound. Thetrue-in relation is “gappy”; certain problematic propo-
sitions are such that neither they nor their negations are true in some contexts. To
cash the notion of “problematic” here semantically, the model theory for CL builds
on the “rule of revision” semantics developed independently by Gupta (1982)
and Herzberger (1982). Very roughly, the idea is that the understanding of most
concepts involves knowing some kind of rule or procedure forapplying the con-
cept. By contrast, understanding the concept of truth involves knowing arevision
rule, a procedure for improving any given candidate for the extension of the truth
predicate. The procedure works like this. Suppose the extensions of all names and
nonlogical predicates in your language are fixed, and that you are given an arbitrary
initial candidate extension for the truth predicate. Now evaluate all the sentences
in your language so interpreted by the ordinary Tarskian semantic rules. All the
sentences that come out true constitute a new candidate extension for the truth
predicate. By continuing in this fashion one gradually eliminates the arbitrariness
and error present in one’s initial candidate and approaches a model that exempli-
fies the Tarskian ideal wherein any given sentence is in the extension of the truth
predicate if and only if it is true. At certain “good” limit stages in the procedure,
things stabilize as much as they are going to, and the only sentences that foil the
Tarskian ideal – the only problematic sentences – are paradoxical sentences like
the liar, which forever oscillate in truth value through the stages of the revision
procedure, and hence are appropriately designated unstable.

In our adaptation, an analogous revision procedure is used to build up the ex-
tension of the true-in i-elation (at each context). At “good” stages – which we use
as models ofL – only pairs〈c,p〉 where, roughly,p is both true and stable inc are
included in the extension of the true-in relation. Pairs in whichp is a paradoxical
proposition like 1 that never stabilize atc are left out. But ifλ is unstable atc, so is
its negation¬λ. Hence, given that only stable propositions can be true in a context,
we have neitherist(c, λ) nor ist(c,¬λ). This fact makes for a useful definition:
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DEFINITION 3. Stable(c, τ ) ≡df ist(c, τ ) ∨ ist(c,¬τ),

that is, a proposition is stable atc iff either it or its negation is true (i.e., stably true)
in c.

Now, to return to the question that prompted this discussion, in models ofL, the
sentence ‘¬ist(c, λ)’ turns out true (assuming the truth of ‘ist(c,∀x(R(x) ↔ x =
λ))′) becauseλ is unstable inc. However, its reified counterpart – the proposition
¬ist(c, λ) – is also unstable inc, and so we also have¬ist(c,¬ist(c, λ)). Hence,
recalling our example above, we cannot in general inferist(c,¬ist(c′, τ )) from
¬ist(c′, t) andc′ 4 c. Rather, we need also to know thatτ is stable atc. That is,
we have as a theorem of CL:

(¬ist(c′, τ ) ∧ Stable(c′, τ ) ∧ c′ 4 c)→ ist(c,¬ist(c′, τ )).(14)

Conversely, the only way that¬ist(c′, τ ) can be (stably) true in a broader context
c is if τ is stable atc′. But this in turn implies that¬τ is (stably)true in c′. This, in
fact, is the last principle of CL:15

L29 (ist(c,¬ist(c′, τ )) ∧ c′ 4 c)→ ist(c′,¬τ).

4. Lifting one Type of Context into Another: The Blocks World Example

Many research areas in philosophy, cognitive science, and AI are defined by a key
set of intuitive data: well-known problems, puzzles, examples, phenomena, etc.
some subset of which, at least, any new approach to the area must address. By
addressing one or more of them successfully, the approach meets a sort of minimal
criterion of adequacy that, at the least, demonstrates that the approach has a certain
measure of promise. In the area of context, McCarthy’s Blocks World example
functions in this way. The example consists chiefly of a theorem that shows how
what is true in a given context can be “lifted” into a subsuming context in a slightly
different form, and then used to derive new information about that context. It pro-
vides a good test of the basic logic in an account of context, notably its account
of subsumption. Consequently, in this penultimate section I want to use CL to
set up and deriveL’s version of the well known theorem found in McCarthy’s
example (cp. Akman and Surav (1996b)). The proof will, very roughly, follow that
of McCarthy (1993) (see also McCarthy and Buvač (1998)).

4.1. THE RELEVANCE OF STABILITY

The proof of the Blocks World theorem will be instructive for several reasons. No-
table among these is the fact that McCarthy’s proof, transcribed into CL, assumes
a principle that is in fact invalid in CL, namely:16

(ist(c, τ )→ ist(c, τ ′))→ ist(c, τ → τ ′).(15)
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For (15) to follow, one must assumeStable(c, τ → τ ′).17 There is an important
point here. Those interested only in practical applications of logic in AI might
want to think of the previous section as an irrelevant, unilluminating technical
exercise that gratuitously opens the problematic Pandora’s box of logical para-
dox. To the contrary, however, as this example shows, the notion of stability (or
something of the sort) is needed in any account that wishes consistently to attribute
to contexts features assumed in many applications of the notion both inside and
outside AI. Specifically, these features are: (i) that contexts and propositions (or
sentences) are first-class citizens; (ii) that one context can subsume another; (iii)
that propositions have a “first-order” form (which, given (i), enables the possibility
of self-reference); and (iv) that there is a true-in relation between contexts and
propositions.

4.2. THE BLOCKS WORLD EXAMPLE IN CL

The differences between the subjective and the objective conceptions force one
to recast the Blocks World example somewhat. Notably, since contexts on the
objective conception are (typically fleeting) individual things rather than (eternal)
logical theories, for the example to have any interest we must talk not about partic-
ular contexts, but about contexttypes. More exactly, we must talk generally about
contexts in which the “axioms” of the original example – axioms embodying the
logical conception of context – are true.

That noted, then, in the Blocks World example, one starts with a context type
above-theorythat expresses several simple principles governing the relationson
and above, viz., thaton(x, y) implies above(x, y), and that the above relation is
transitive. (As in the original example, we allow for a finite number of additional
principles as well.) We express theabove-theorytype in the language of CL as
follows:

AT (c) ≡df
ist(c, [(∀xy)(on(x, y)→ above(x, y))]) ∧
ist(c, [(∀xyz)((above(x, y) ∧ above(y, z))→ above(x, z))]) ∧(16)

[... additional axioms...].
A second context typeblocksis then introduced that includes the propositions of
(some version of) the situation calculus (where contexts are taken to be situations)
as well as axioms (unstated here) about the Blocks World. Accordingly,blocks
contexts are not interested in simple propositions about what is on or above what
simpliciter, but rather in propositions about what is on or above what in what
contexts. Thus, unlikeabove-theorycontexts,blockscontexts also involve 3-place
on andaboverelations.

Therefore, it is essential thatblockscontexts be able to relate their 3-placeon
andaboverelations to their 2-place counterparts inabove-theorycontexts. Con-
sequently, it entails two propositions to this effect. Theblocks type can then be
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represented in the language of CL as follows:18

Bl(c) ≡df
ist(c, [(∀xyz)(on(x, y, z)↔ ist(z, on(x, y)))]) ∧
ist(c, [(∀xyz)(above(x, y, z)↔ ist(z, above(x, y)))]) ∧(17)

[... situation calculus axioms...] ∧
[... Blocks World axioms...].

The above-theorycontext is now “lifted” into the blocks context by asserting
that, in anyblockscontext, every context is anabove-theorycontext, i.e., a con-
text in which the facts coded into theAT predicate hold. This is expressed by the
following sentence:

(∀x)(Bl(x)→ ist(x, (∀y)(Context (y)→ AT (y)))).(18)

As noted, the proof requires the following CL lemma:

(∀x)(Stable(x, τ → τ ′)→
(19)

((ist(x, τ)→ ist(x, τ ′))→ ist(x, τ → τ ′))).

All we need to assume to apply this proposition is the reasonable thesis that atomic
propositions involving the 3-placeonandaboverelations are stable at all contexts:

(∀wxyz)(Stable(w, on(x, y, z)) ∧ Stable(w, above(x, y, z)))(20)

which yields

(∀wxyz)(Stable(w, on(x, y, z)→ above(x, y, z))).(21)

We now turn to the theorem (McCarthy and Buvač (1998), p. 21).

THEOREM:(∀w)(Bl(w)→ ist(w, (∀xyz)(on(x, y, z)→ above(x, y, x)))).
Proof:19 Suppose

Bl(c)(22)

and that

ist(c, on(a, b, c′)).(23)

From (17) and our local propositional logic, we have

ist(c, [(∀xyz)(on(x, y, z)→ ist(c′, on(x, y)))]).(24)

From (23), by L17 (and our local MP L14), it follows that

ist(c, E!(a, b, c′)),(25)
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so by L11 we have

ist(c, [on(a, b, c′)→ ist(c′, on(a, b))]).(26)

Thus, by (23) and (26) we have

ist(c, ist(c′, on(a, b)))(27)

and, by L27, that

ist(c′, on(a, b)).(28)

By (18), (25), and L11,

ist(c,AT (c′)).(29)

So, by the definition (16) of AT,

ist(c, ist(c′, [(∀xy)(on(x, y)→ above(x, y))])).(30)

Thus, by L27 again,

ist(c′, [(∀xy)(on(x, y)→ above(x, y))]).(31)

By localism L17 and (28) it follows that

ist(c′, E!(a, b))(32)

and so by a couple applications of L11 and L14, (31) and (32) yield

ist(c′, above(a, b)).(33)

From (17) we have

ist(c, [(∀xyc′)(ist(c′, above(x, y))→ above(x, y, c′))]),(34)

and so from (25), (34), L11 and L14,

ist(c, [ist(c′, above(a, b))→ above(a, b, c′)]).(35)

By (25), we haveist(c, E!(c′)), i.e.,

c′ 4 c,(36)

and so that fact, together with (33) and (13), entail

ist(c, ist(c′, above(a, b))).(37)

Hence, by (35), (37), and L14), we have

ist(c′, above(a, b, c′)),(38)
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so by the deduction theorem, it follows fromBl(c) alone that

ist(c, on(a, b, c′))→ ist(c, above(a, b, c′))(39)

Thus, given (19) and (21), (39) yields

ist(c, [on(a, b, c′)→ above(a, b, c′)]),(40)

and so by M2

ist(c, (∀xyz)(on(x, y, z)→ above(x, y, z))),(41)

and so, by the deduction theorem again, we have

Bl(c)→ ist(c, (∀xyz)(on(x, y, z)→ above(x, y, z))),(42)

and so by GC we have our theorem:

(∀w)(Bl(w)→ ist(w, (∀xyz)(on(x, y, z)→ above(x, y, z)))).(43)

5. Conclusion

In this paper I’ve attempted to clarify the objective conception of context and
develop a logic for it. On this conception, contexts are taken to be (in general)
limited pieces of the real world, whose denizens include not only ordinary indi-
viduals, but contexts and propositions as well. The objective conception stands in
contrast to the subjective conception, which understands contexts to be (something
like) sets of propositions believed by rational agents. The objective conception
is, of course, not a philosophicalcompetitorto the subjective conception. Both
conceptions are valid, stemming from different intuitions, and both, hopefully, will
prove useful in appropriate domains. In particular, a logic for the objective concep-
tion appears to be the appropriate formal foundation for enterprise modeling and,
more generally, for knowledge representation applications in which the standpoint
of the representing agent is considered to be outside the space of contexts being
represented.
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Notes
1A particularly good, up-to-date list of references is found in McCarthy and Buvač (1998). See also
the useful overview by Akman and Surav (1996a).
2L is counted as an intensional logic because it contains terms that denote (inL’s intended model
theory) entities – viz., propositions – for which an standard extensional substitutivity principle fails,
specifically, the principle

ist(c,p)↔ ist(c′,p′)→ ist(c,p) = ist(c′,p′)
that is, the principle that equivalent propositions are identical. Because it fails, it follows that propo-
sitions are not truth values, and hence are not themselves extensional.
3I am assuming a “rigid” account of names, so that identities are assumed to be absolute across
contexts. (Thelocus classicusof this view, of course, is Kripke (1972).) This seems to be the most
appropriate account of names for the objective conception.
4Strictly speaking, neither the language of Bealer (1982) nor that of Turner (1987) has expressions
that are both terms and formulas. But the reason for this is simply that these two theories are theories
not only of propositions but of properties and relations as well, and the terms for the latter entities
in general require a variable binding apparatus (to capture their adicity) that causes them to differ
structurally from formulas. However, were these two theories to restrict their focus to propositions,
the variable binding apparatus would be unnecessary and any syntactic differences between terms
and formulas that remained (eg., square brackets or Turner’s bareλ operator) could be eliminated.
5Atomic localism is the situation theoretic analog of the thesis ofserious actualismin the philosophy
of modality, according to which objects have properties only at those possible worlds in which they
exist (cf., eg, Adams (1981), Menzel (1990), Menzel (1991), and Plantinga (1983)).
6More formally,c is weakly partial if there is some objecte such that for non+ 1-place relationR
(n≥0) and individualse1, . . . , en, is it the case that the propositionR(e1, . . . e, . . . en) is true inc.
7The distinction between internal and external perspectives has an exact parallel in the semantics of
quantified modal logic in the distinction between “internalism” and “perspectivalism”. This is hardly
surprising; formally, very little separates a context from a possible world. Prior (1957) is still the
most cogent defense of internalism. Perspectivalism is defended in Menzel (1993); see also Adams
(1981) for a sort of intermediate position.
8I emphasize that this notation is being used only as an abbreviation, unlike McCarthy (1993), where
reference to an “outer context” in each formula is essential. Note also that I am not exactly sure of
the nature of the ‘:’ predicate in McCarthy’s (and Buvač’s) work. It usually appears to be an object
language predicate, but, for example, it is not part of the lexicon from which Buvač (1994) builds his
language, and hence appears there to be a metalinguistic predicate.
9A universal closure of a formulaϕ is the result of affixing universal quantifiers∀v to ϕ, for at least
every variablev occurring free inϕ. Note that the stipulation that axioms be universal closures of
instances of the schemas means that all theorems are all sentences, i.e., they contain no free variables.
The reason for this is the special semantics for variables that is used in the model theory forL to
make the theory of propositions work smoothly.
10Note that the definition of0 ` ϕ prevents one from using GC to derive, e.g.,(∀x)P (x) fromP(a).
11To make this an official extension of the language, we would add the axiomd(∀x)ϕxc ↔
(∀x)(Context (x)→ ϕ)e for any such variablec.
12Philosophically it is natural to postulate logical functions for all the boolean operators and the
existential quantifier, but they are formally unnecessary, and so are omitted for purposes here.
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13Interestingly, L27 is a valid principle of Buvač (1994), which is presented as an attempt to formal-
ize the ideas behind McCarthy and Buvač (1998). In fairness, there are sections of McCarthy and
Buvǎc (1998) (eg, Section 6) where the authors seem clearly to have more of an objective conception
in mind for the given application.
14There is nothing in the logic that prevents such “self-aware” contexts, nor should there be; see esp.
Barwise (1989), ch. 8 for numerous examples.
15It should be noted that recent work by Antonelli (1994) and Kremer (1993) suggest that CL will
be essentially incomplete. Though undesirable, perhaps, since the purpose of the logic at this point is
for representation and conceptual clarification rather than reasoning, I do not consider this a serious
liability, but rather simply a reflection of the theory’s expressive power.
16For a counterexample, letM be a model and supposeτ and τ ′ are both unstable relative to a
contextc in M and that they are out of phase with one another relative toc, i.e., at any level in the
construction that generatesM, τ is true atc iff τ ′ is false atc. Then (I abuse notation slightly here)
the conditionalist(c, τ)→ ist(c, τ ′) is true inM because the antecedent is false (sinceτ is unstable
at c) but ist(c, τ → τ ′) is false inM. For whenτ andτ ′ are both unstable atc and out of phase, the
conditional propositionτ → τ ′ is unstable atc as well (it will be true atc in stages whereτ is false,
and false atc in stages whereτ is true).

I should note that McCarthy and Buvač (1998) (p. 22) actually use a lifting axiom in their proof
(based on their principledischarge): ist(assuming(c,p), q)→ ist(c,p → q), of which (15) seems
an accurate reconstruction in CL.
17Or at least, that appears to be the only way to prove it. Suppose thatStable(c, τ → τ ′) and that
ist(c, τ) → ist(c, τ ′), but that¬ist(c, τ → τ ′). Then by stability, we haveist(c,¬(τ → τ ′)), i.e.
ist(c, τ ∧ ¬τ ′). It follows from our local propositional logic thatist(c, τ) and ist(c,¬τ ′), but we
assumedist(c, τ)→ ist(c, τ ′), hence we also haveist(c, τ ′), and hence, by local propositional logic
again,ist(c, τ ′ ∧ ¬τ ′), contradicting L28. Soist(c, τ → τ ′).
18That we are limited to finitely axiomatizable context types on this approach is probably no great
source of concern for AI researchers, but in fact it is no intrinsic limitation, as the language and
semantics of CL can be extended to allow for special context predicates that can be used to build
atomic formulas (not just terms), and which could then, if necessary, be axiomatized with countably
many axioms. (Indeed, such predicates might be required in any case if we wish to develop a more
robust theory of contexts based on, say situation theory or the situation calculus.) For example, if
there were denumerably many Blocks World axioms, then if ‘Bl’ were a special context predicate
we could have an axiom of the formBl(c)→ ϕ for each such axiomϕ.
19Given the way the logic is set up, it is easiest here to suppose now thatc andc′ are individual
constants.
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